NERSC Overview

Rebecca Hartman-Baker NERSC User Engagement Group

NUG 2016 New User Training March 22, 2016

NERSC

- National Energy Research Scientific Computing Center
 - Established 1974, first unclassified supercomputer center
 - Original mission: to enable computational science as a complement to magnetically controlled plasma experiment
- Today's mission: Accelerate scientific discovery at the DOE Office of Science through high performance computing and extreme data analysis
- A national user facility

Today's Talk

 A brief introduction to the Center and some simple rules for getting work done at NERSC.

Trajectory of an energetic ion in a Field Reverse Configuration (FRC) magnetic field. Magnetic separatrix denoted by green surface. Spheres are colored by azimuthal velocity. Image courtesy of Charlson Kim, U. of Washington; NERSC repos m487, mp21, m1552

You Are Not Alone!

A calculation of the selfgenerated plasma current in the W7-X reactor, performed using the SFINCS code on Edison. The colors represent the amount of electric current along the magnetic field, and the black lines show magnetic field lines.

Image: Matt Landreman

NERSC: Mission Science Computing for the DOE Office of Science

Diverse workload:

- 6000 users, 750+ projects
- 700 codes; 100s of users daily

Allocations controlled primarily by DOE

- 80% DOE Annual Production awards (ERCAP):
 - From 10K hour to ~10M hour
 - Proposal-based; DOE chooses
- 10% DOE ASCR Leadership
 Computing Challenge
- 10% NERSC reserve
 - NISE, NESAP

Simulation of density-driven flow for CO₂ storage in saline aquifers. Shown is a snapshot of the CO₂ concentration after onset of convection overlayed on the AMR grid. Image courtesy of George Pau and John Bell (LBNL). Repo mp111

DOE View of Workload

Initial Allocation of Hours by DOE OSc Program Office 2015

ASCR	Advanced Scientific Computing Research
BER	Biological & Environmental Research
BES	Basic Energy Sciences
FES	Fusion Energy Sciences
HEP	High Energy Physics
NP	Nuclear Physics

Over 600 codes run at NERSC

NERSC 2015 Code Usage

- 10 codes make up
 50% of the
 workload
- 25 codes make up
 66% of the
 workload

What Role Does NERSC Play?

You Will Be Successful!

Collision between two
shells of matter ejected
in two supernova
eruptions, showing a
slice through a corner of
the event. Colors
represent gas density
(red is highest, dark blue
is lowest). Image
courtesy of Ke-Jung
Chen, School of Physics
and Astronomy, Univ.
Minnesota. Repo m1400

2015 Science Output

2,078 refereed publications

- Make sure you <u>acknowledge NERSC</u> in publications; please use "official" acknowledgement
- https://www.nersc.gov/users/accounts/useraccounts/acknowledge-nersc/
- This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
- Science highlights sent to DOE each quarter.
 - Send us links to your publications.

Magnetic field lines from HiFi simulations of two spheromaks. NERSC repo m1255 Image courtesy of Vyacheslav Lukin (NRL)

NERSC Systems Today

System Choices

Edison

- Largest machine
- Large processor count jobs given priority boost
- 40% discount on very large jobs
- Lower charge factor
- No capability for singlecore or serial jobs

Cori

- Throughput machine
- Queues allow single-core jobs
- Longer walltime limits for smaller jobs
- Higher charge factor
- Large processor count jobs discouraged (no boost)

Simple Rules for Success

- Use our web site; use "Search..."
- Cray systems are not "typical" clusters, pay attention to differences
- Be kind to your neighbor users
- Back your stuff up
- Pick the right resource for your job and your data
- Use batch system effectively; pay attention to systemspecific syntax and policies
- Use your allocation smartly
- Pay attention to security

Chemistry & Materials Applications

NERSC compiles and supports many software packages for our users.

More than 13.5 million lines of source code Compiled, Optimized, and Tested

GAUSSIAN

NERSC User's Group

- Get involved. Make NUG work for you.
- Provide advice, feedback we listen.
- Monthly teleconferences with NERSC, usually the 2nd Thursday of the month, 11:00 AM to noon Pacific Time.
- Executive Committee three representatives from each office and three members-at-large.
- Community!

Rule # 4: Expect Consistency. And Change.

Molecular Dynamics simulation snapshot showing water molecules (red and white), and sodium, chloride ions (green and purple) encountering a sheet of graphene (pale blue, center) perforated by holes of the right size, with water passing through (left side), but sodium and chloride being blocked.

NERSC Timeline

Thank you and welcome to NERSC!

Generic Multiprocessor Architecture

